
QueryCraft Page 1

QueryCraft Page 2

QueryCraft
A Hands-On Beginner's Tutorial

By Vidya Niwas Pandey

Brief Author Bio:

An Application Developer proficient in SQL, Vidya Niwas Pandey holds a

Master's in Computer Application and a Bachelor's in Science. With a rich

background spanning two years of computer teaching, his expertise is geared

towards making SQL accessible to beginners.

Introduction/Foreword:

Welcome to QueryCraft, where the art of crafting SQL queries comes to life! In

this hands-on tutorial, we embark on a journey from the fundamentals to

mastery. Whether you're a novice or just seeking a refresher, this book is your

guide to becoming proficient in SQL Server queries. Let's explore the world of

databases together!

Acknowledgments:

I would like to express my gratitude to [Acknowledged

Person/Organization] for their valuable insights and support during

the creation of this book.

Copyright Information:

© 2023 Vidya Niwas Pandey. All rights reserved.

Contact Information:

For inquiries, feedback, or further assistance, please contact Vidya

Niwas Pandey at vidyaniwas2@gmail.com.

QueryCraft Page 3

Table of Contents

GETTING STARTED

1. What is SQL Server

2. Install the SQL Server

3. Connect to the SQL Server

4. SQL Server Sample Database

5. Load Sample Database

DATA MANIPULATION

1. SELECT

2. ORDER BY

3. OFFSET FETCH

4. SELECT TOP

5. SELECT DISTINCT

6. WHERE

7. NULL

8. AND

9. OR

10. IN

11. BETWEEN

12. LIKE

13. Column & Table Aliases

14. Joins

 INNER JOIN

 LEFT JOIN

 RIGHT JOIN

 FULL OUTER JOIN

 Self-Join

 CROSS JOIN

15. GROUP BY

16. HAVING

17. GROUPING SETS

18. CUBE

19. ROLLUP

20. Sub query

21. Correlated Sub query

22. EXISTS

23. ANY

24. ALL

25. UNION

26. INTERSECT

27. EXCEPT

28. Common Table Expression (CTE)

29. Recursive CTE

30. INSERT

QueryCraft Page 4

31. INSERT Multiple Rows

32. INSERT INTO SELECT

33. UPDATE

34. UPDATE JOIN

35. DELETE

36. MERGE

37. PIVOT

38. Transaction

DATABASE NORMALIZATION

1. First Normal Form (1 NF)

2. Second Normal Form (2 NF)

3. Third Normal Form (3 NF)

4. Boyce Codd Normal Form or Fourth Normal Form (BCNF or 4 NF)

5. Fifth Normal Form (5 NF)

6. Sixth Normal Form (6 NF)

DATA DEFINITION

1. Create New Database

2. Drop Database

3. Create Schema

4. Alter Schema

5. Drop Schema

6. Create New Table

 Identity Column

 Sequence

7. Add Column

8. Modify Column

9. Drop Column

10. Computed Columns

11. Rename Table

12. Drop Table

13. Truncate Table

14. Temporary Tables

15. Synonym

16. SELECT INTO

17. PRIMARY KEY

18. FOREIGN KEY

19. CHECK Constraint

20. UNIQUE Constraint

21. NOT NULL Constraint

QueryCraft Page 5

CREATING INDEXES IN SQL SERVER

1. Clustered Index

2. Non-Clustered Index

3. Unique Index

4. Filtered Index

5. Column Store Index

6. Hash Index

EXPRESSIONS

1. CASE

2. COALESCE

3. NULLIF

AGGREGATE FUNCTION

1. AVG

2. CHECKSUM_AGG

3. COUNT

4. COUNT_BIG

5. MAX

6. MIN

7. STDEV

8. STDEVP

9. SUM

10. VAR

11. VARP

STRING FUNCTIONS

1. ASCII

2. CHAR

3. CHARINDEX

4. CONCAT

5. CONCAT_WS

6. DIFFERENCE

7. FORMAT

8. LEFT

9. LEN

10. LOWER

11. LTRIM

12. NCHAR

13. PATINDEX

14. QUOTENAME

15. REPLACE

16. REPLICATE

17. REVERSE

18. RIGHT

QueryCraft Page 6

19. RTRIM

20. SOUNDEX

21. SPACE

22. STR

23. STRING_AGG

24. STRING_ESCAPE

25. STRING_SPLIT

26. STUFF

27. SUBSTRING

28. TRANSLATE

29. TRIM

30. UNICODE

31. UPPER

SYSTEM FUNCTIONS

1. CAST

2. CONVERT

3. CHOOSE

4. ISNULL

5. ISNUMERIC

6. IIF

7. TRY_CAST

8. TRY_CONVERT

9. TRY_PARSE

10. Convert date time to string

11. Convert string to date time

12. Convert date time to date

WINDOW FUNCTIONS

1. CUME_DIST

2. DENSE_RANK

3. FIRST_VALUE

4. LAG

5. LAST_VALUE

6. LEAD

7. NTILE

8. PERCENT_RANK

9. RANK

10. ROW_NUMBER

DATE FUNCTIONS

1. CURRENT_TIMESTAMP

2. GETUTCDATE

3. GETDATE

4. SYSDATETIME

5. SYSUTCDATETIME

6. SYSDATETIMEOFFSET

QueryCraft Page 7

RETURNING THE DATE AND TIME PARTS

1. DATENAME

2. DATEPART

3. DAY

4. MONTH

5. YEAR

RETURNING A DIFFERENCE BETWEEN TWO DATES

1. DATEDIFF

MODIFYING DATES

1. DATEADD

2. EOMONTH

3. SWITCHOFFSET

4. TODATETIMEOFFSET

CONSTRUCTING DATE AND TIME FROM THEIR PARTS

1. DATEFROMPARTS

2. DATETIME2FROMPARTS

3. DATETIMEOFFSETFROMPARTS

4. TIMEFROMPARTS

VALIDATING DATE AND TIME VALUES

1. Function

2. ISDA

SQL SERVER STORED PROCEDURE

1. Create a Stored Procedure in SQL Server with input parameters

2. Stored Procedure to insert data

3. Stored Procedure to update table

4. Stored Procedure to select data from table

5. Stored Procedure to delete data from table

6. Stored Procedure to validate username and password

7. Stored Procedure in SQL to add two numbers

8. Stored Procedure in SQL with multiple queries

9. Stored Procedure for insert and update in SQL Server with output parameter

10. SQL Server Stored Procedure to list columns

11. Dynamic where clause in SQL Server Stored Procedure

12. SQL Server Stored Procedure return select result concatenate

QueryCraft Page 8

Tables in SQL Server

1. Creating a System-Versioned Temporal Table

2. Modifying Data in a System-Versioned Temporal Table

3. Views

4. Loops

5. #Tables

QueryCraft Page 9

GETTING STARTED

1. What is SQL SERVER?

SQL Server is a powerful relational database management system (RDBMS) developed by

Microsoft. It provides a secure and scalable platform for managing and storing data. Here are

key points to understand about SQL Server:

 Definition: SQL Server is a software product that manages the storage, organization,

retrieval, and security of data in a relational database.

 Key Components:
 Database Engine: The core service for storing, processing, and securing data.

 SQL Server Management Studio (SSMS): A tool for managing SQL Server

databases.

 Integration Services (SSIS), Analysis Services (SSAS), Reporting Services

(SSRS): Additional services for ETL (Extract, Transform, and Load), data analysis,

and reporting.

 Versions: SQL Server has various editions, including express (free), Standard, and

Enterprise, each with different features and capabilities.

 Use Cases: SQL Server is used in various industries for applications ranging from small-

scale projects to enterprise-level systems.

 SQL Language: SQL Server uses the SQL (Structured Query Language) for querying and

manipulating data. Understanding SQL is crucial for effective interaction with the database.

2. Install the SQL Server
Before you can start working with SQL Server, you need to install it on your machine. Here's

a step-by-step guide on installing SQL Server:

 System Requirements: Check the system requirements for the version of SQL Server you

plan to install.

 Download and Run Installer: Visit the official Microsoft website to download the SQL

Server installer. Run the installer to begin the installation process.

 Setup Wizard: Follow the setup wizard, providing necessary information such as the edition

you want to install, licensing terms, and installation type (standalone or custom).

 Feature Selection: Choose the SQL Server features you want to install. Common features

include the Database Engine and SQL Server Management Tools.

 Instance Configuration: Configure the SQL Server instance by specifying a unique instance

name, and choose between default or named instances.

 Server Configuration: Set up authentication mode (Windows Authentication or Mixed

Mode) and provide credentials for the SQL Server.

QueryCraft Page 10

 Database Engine Configuration: Configure server authentication mode and add SQL Server

administrators.

 Installation: Begin the installation process. Once completed, you'll have a fully functional

SQL Server instance on your machine.

 Verification: Verify the successful installation by connecting to the SQL Server instance

using SQL Server Management Studio.

This initial setup lays the foundation for your journey with SQL Server, enabling you to start

creating databases, tables, and executing queries.

3. Connect to the SQL Server

Now that you've set up your digital file cabinet (SQL Server), let's talk about how to open it

and start using it.

 Open the Cabinet: Imagine you have the digital file cabinet in your home office. To use it,

you need to open it, right?

 Connect to SQL Server: In the computer world, this is called "connecting to SQL Server."

It's like opening the door to your digital file cabinet. You do this using a tool called SQL

Server Management Studio (SSMS).

 Enter the Room (SSMS): When you open SSMS, it's like entering the room where your

digital file cabinet is. SSMS is your way of interacting with SQL Server.

 Provide Some Details: Just like you need a key to enter a room, SSMS needs some

information to connect to your SQL Server. This includes the name of your server (where the

digital file cabinet is located) and your login details.

QueryCraft Page 11

 Success! You're In: Once you click "Connect," it's like turning the key and walking into the

room. Now, you can see all the drawers and sections inside your digital file cabinet.

4. SQL Server Sample Database

Now that you're inside the room with your digital file cabinet (SQL Server), you might be

wondering what kind of information you can store and organize. Let's talk about having a

"Sample Database."

 Empty Drawers: Imagine your digital file cabinet is empty right now. A sample database is

like a set of folders and documents that someone already put in the drawers. It's there to help

you understand how to organize and manage information.

 Learn by Example: Just like learning to cook by following a recipe, a sample database lets

you see how things are organized and how different types of information are stored.

 Practice Zone: You can play around with this sample database, try out different SQL queries

(remember, it's like giving instructions to the cabinet), and see how the information responds.

 No Fear of Messing Up: Since it's just a sample, you don't have to worry about making

mistakes. It's a safe space to practice and get comfortable with your digital file cabinet.

 Ready to Explore: Once you've connected to SQL Server and have a sample database, you're

ready to explore and start using your digital file cabinet to organize and manage your data.

QueryCraft Page 12

5. Load Sample Database

Now that you're inside your digital file cabinet (SQL Server) and have seen the sample

folders and documents, let's talk about how to "load" or put in a sample database.

 Empty Shelves: Right now, your digital file cabinet might have empty shelves. Loading a

sample database is like bringing in a set of folders and documents to fill those shelves.

 Purpose of a Sample Database: Think of it as a practice set. It contains fictional data that

you can use to understand how to work with real information later.

 Finding the Right Sample: There are various sample databases available online. Some are

designed for beginners, while others simulate real-world scenarios. Choose one that fits your

learning goals.

 Downloading the Sample: It's like getting a digital box of folders and documents. Download

the sample database from a reliable source, and it usually comes in a compressed file.

 Unpacking the Box: Once downloaded, you need to "unzip" or extract the files. It's like

taking items out of a physical box and placing them on your desk.

 Knowing Your Cabinet's Address: Before loading the sample, make sure you know where

your SQL Server is located (its address). This is crucial for placing the sample in the right

spot.

 Using SQL Server Management Studio (SSMS): Open SSMS, the tool you use to interact

with your digital file cabinet. It's like having your work desk ready.

 Running a Script: The sample usually comes with a script – a set of instructions in SQL

language. Running this script is like following a recipe to organize the folders and documents

in your digital file cabinet.

 Reviewing the Contents: After running the script, explore the contents of your sample

database. It's like opening the folders and seeing what's inside.

 Practice, Explore, Learn: Now, you can practice writing queries (instructions) to retrieve

information from your sample database. It's your safe space to explore and learn without

worrying about making real mistakes.

QueryCraft Page 13

Create a simple table named "Products" and insert some sample data for the examples. We'll

assume a basic structure with columns like ProductName, Price, Category, and Description.

 Create the Products table
CREATE TABLE Products (

 ProductID INT PRIMARY KEY,

 ProductName VARCHAR(50),

 Price DECIMAL(10, 2),

 Category VARCHAR(50),

 Description VARCHAR(100),

 ManufactureDate DATE

);

 Insert some sample data

INSERT INTO Products (ProductID, ProductName, Price, Category, Description,

ManufactureDate)

VALUES

 (1, 'Laptop', 800.00, 'Electronics', 'High-performance laptop', '2022-01-10'),

 (2, 'Smartphone', 500.00, 'Electronics', 'Latest smartphone model', '2022-02-15'),

 (3, 'T-shirt', 20.00, 'Clothing', 'Comfortable cotton t-shirt', '2022-03-05'),

 (4, 'Headphones', 150.00, 'Electronics', 'Noise-canceling headphones', '2022-04-20'),

 (5, 'Jeans', 40.00, 'Clothing', 'Classic blue jeans', '2022-05-12'),

 (6, 'Tablet', 300.00, 'Electronics', 'Compact tablet device', '2022-06-30'),

 (7, 'Sneakers', 60.00, 'Footwear', 'Running sneakers', '2022-07-18');

 Create the Order table
CREATE TABLE Orders (

 OrderID INT PRIMARY KEY,

 ProductID INT,

 Quantity INT,

 OrderDate DATE,

 CONSTRAINT FK_ProductID FOREIGN KEY (ProductID) REFERENCES

Products(ProductID)

);

INSERT INTO Orders (OrderID, ProductID, Quantity, OrderDate)

VALUES

 (1, 1, 2, '2023-01-15'),

 (2, 2, 1, '2023-01-16'),

 (3, 1, 1, '2023-01-17'),

 Add more rows as needed

 (4, 3, 3, '2023-01-18');

QueryCraft Page 14

DATA MANIPULATION

1. SELECT

 This query retrieves the names and prices of all products from the Products table.

SELECT ProductName, Price FROM Products;

The SELECT statement is the foundation of SQL queries. It specifies the columns you want

to retrieve from a table. In this example, we're retrieving the ProductName and Price

columns from the "Products" table.

2. ORDER BY

 This query retrieves product names and prices from the Products table, ordered by price in

descending order.

SELECT ProductName, Price FROM Products ORDER BY Price DESC;

The ORDER BY clause is used to sort the result set in ascending (ASC) or descending

(DESC) order based on one or more columns. In this example, we're ordering the products by

price in descending order.

3. OFFSET FETCH

 This query skips the first 5 rows and fetches the next 10 rows of products from the Products

table, ordered by price.

SELECT ProductName, Price FROM Products ORDER BY Price OFFSET 5 ROWS FETCH

NEXT 10 ROWS ONLY;

The OFFSET and FETCH clauses are used for pagination. OFFSET skips a specified

number of rows, and FETCH retrieves a specified number of rows. This is useful for

implementing page-wise data retrieval.

QueryCraft Page 15

4. SELECT TOP

 This query retrieves the top 5 product names and prices from the Products table, ordered by

price.

SELECT TOP 5 ProductName, Price FROM Products ORDER BY Price;

The SELECT TOP clause limits the number of rows returned by a query. In this example,

we're retrieving the top 5 product names and prices from the "Products" table, ordered by

price.

5. SELECT DISTINCT

 This query retrieves unique product categories from the Products table.

SELECT DISTINCT Category FROM Products;

The SELECT DISTINCT statement is used to retrieve unique values from a column. In this

example, we're retrieving unique product categories from the "Products" table.

6. WHERE

 This query retrieves product names and prices from the Products table where the category is

'Electronics'.

 SELECT ProductName, Price FROM Products WHERE Category = 'Electronics';

The WHERE clause is used to filter rows based on a specified condition. In this example,

we're filtering products where the category is 'Electronics'.

7. NULL

 This query retrieves product names from the Products table where the description is missing

(NULL).

SELECT ProductName FROM Products WHERE Description IS NULL;

QueryCraft Page 16

The NULL keyword represents missing or unknown data. In this example, we're retrieving

product names where the description is not specified (NULL).

8. AND

 This query retrieves product names and prices from the Products table where the category is

'Electronics' and the price is greater than 500.

SELECT ProductName, Price FROM Products WHERE Category = 'Electronics' AND Price

> 500;

The AND operator combines multiple conditions in a WHERE clause. In this example, we're

retrieving products where the category is 'Electronics' and the price is greater than 500.

9. OR

 This query retrieves product names and prices from the Products table where the category is

either 'Electronics' or 'Clothing'.

SELECT ProductName, Price FROM Products WHERE Category = 'Electronics' OR

Category = 'Clothing';

The OR operator combines multiple conditions in a WHERE clause. In this example, we're

retrieving products where the category is either 'Electronics' or 'Clothing'.

10. IN

 This query retrieves product names and prices from the Products table where the category is

either 'Electronics' or 'Clothing'.

SELECT ProductName, Price FROM Products WHERE Category IN ('Electronics',

'Clothing');

The IN operator is used to specify multiple values in a WHERE clause. In this example,

we're retrieving products where the category is either 'Electronics' or 'Clothing'.

QueryCraft Page 17

11. BETWEEN

 This query retrieves product names and prices from the Products table where the price is

between $50 and $100.

SELECT ProductName, Price FROM Products WHERE Price BETWEEN 50 AND 100;

The BETWEEN operator is used to filter rows based on a range of values. In this example,

we're retrieving products where the price is between $50 and $100.

12. LIKEname

Contains the word 'phone'.

SELECT ProductName FROM Products WHERE ProductName LIKE '%phone%';

The LIKE operator is used for pattern matching in a WHERE clause. In this example, we're

retrieving products where the product name contains the word 'phone'.

13. Column & Table Aliases

 This query retrieves product names and their prices, using aliases for column names.

SELECT PName = ProductName, Cost = Price FROM Products;

Aliases are used to give a table or column a temporary name in a query. In this example,

we're assigning aliases PName and Cost to the ProductName and Price columns, respectively.

Create a second table named "Categories" to use in the examples involving joins. This table

will store information about different product categories.

 Create the Categories table

CREATE TABLE Categories (CategoryID INT PRIMARY KEY, CategoryName

VARCHAR(50));

Insert some sample data into the Categories table

INSERT INTO Categories (CategoryID, CategoryName) VALUES (1, 'Electronics'), (2,

'Clothing'), (3, 'Footwear'), (4, 'Accessories');

QueryCraft Page 18

In this example:

 The Categories table has columns for CategoryID and CategoryName.

 The CategoryID is the primary key, ensuring each category has a unique identifier.

 We've inserted some sample data with different category IDs and names.

14. Joins

Joins are used to combine rows from two or more tables based on a related column.

15. INNER JOIN

 This query retrieves product names and their categories from the Products and Categories

tables using INNER JOIN.

SELECT ProductName, CategoryName FROM Products INNER JOIN Categories ON

Products.CategoryID = Categories.CategoryID;

An INNER JOIN returns only the rows where there is a match in both tables. In this example,

we're retrieving product names and their categories.

16. LEFT JOIN

 This query retrieves all product names and their categories from the Products and Categories

tables using LEFT JOIN.

SELECT ProductName, CategoryName FROM Products LEFT JOIN Categories ON

Products.CategoryID = Categories.CategoryID;

A LEFT JOIN returns all rows from the left table and matching rows from the right table. In

this example, we're retrieving all product names and their categories, even if there is no

matching category.

17. RIGHT JOIN

 This query retrieves all categories and their associated product names from the Products and

Categories tables using RIGHT JOIN.

 SELECT ProductName, CategoryName FROM Products RIGHT JOIN Categories ON

Products.CategoryID = Categories.CategoryID;

QueryCraft Page 19

A RIGHT JOIN returns all rows from the right table and matching rows from the left table. In

this example, we're retrieving all categories and their associated product names, even if there

are no matching products.

18. FULL OUTER JOIN

 This query retrieves all product names and their categories from the Products and Categories

tables using FULL OUTER JOIN.

SELECT ProductName, CategoryName FROM Products FULL OUTER JOIN Categories

ON Products.CategoryID = Categories.CategoryID;

A FULL OUTER JOIN returns all rows when there is a match in either the left or right table.

In this example, we're retrieving all product names and their categories, including those

without matching products or categories.

19. Self-Join

 This query retrieves employees and their managers from an Employees table using a self-

join.

SELECT e.EmployeeName, m.EmployeeName AS ManagerName FROM Employees e

JOIN Employees m ON e.ManagerID = m.EmployeeID;

A self-join is a regular join, but the table is joined with itself. In this example, we're

retrieving employees and their respective managers.

20. CROSS JOIN

 This query retrieves all possible combinations of product names and categories from the

Products and Categories tables using CROSS JOIN.

SELECT ProductName, CategoryName FROM Products CROSS JOIN Categories;

A CROSS JOIN returns the Cartesian product of the two tables, i.e., all possible

combinations of rows. In this example, we're retrieving all combinations of product names

and categories. Top of Form

QueryCraft Page 20

21. GROUP BY

 This query retrieves the average price for each product category from the Products table.

SELECT Category, AVG(Price) AS AvgPrice

FROM Products

GROUP BY Category;

The GROUP BY clause is used to group rows that have the same values in specified columns

into summary rows. In this example, we're grouping products by category and calculating the

average price for each category.

22. HAVING

 This query retrieves product categories and their average prices, but only for categories with

an average price greater than $50.

SELECT Category, AVG(Price) AS AvgPrice

FROM Products

GROUP BY Category

HAVING AVG(Price) > 50;

The HAVING clause is used in combination with GROUP BY to filter the results based on a

condition applied to the grouped data. In this example, we're retrieving product categories

and their average prices, but only for categories with an average price greater than $50.

23. GROUPING SETS

 This query retrieves the total count of products and the average price, grouped by both

category and manufacturer.

SELECT Category, Manufacturer, COUNT(*) AS ProductCount, AVG(Price) AS AvgPrice

FROM Products

GROUP BY GROUPING SETS (Category, Manufacturer);

The GROUPING SETS clause allows you to specify multiple groupings in a single query. In

this example, we're retrieving the total count of products and the average price, grouped by

both category and manufacturer.

QueryCraft Page 21

24. CUBE

 This query retrieves the total count of products and the average price, considering all

possible combinations of category, manufacturer, and year.

SELECT Category, Manufacturer, YEAR(ManufactureDate) AS ProductionYear,

COUNT(*) AS ProductCount, AVG(Price) AS AvgPrice

FROM Products

GROUP BY CUBE (Category, Manufacturer, YEAR(ManufactureDate));

The CUBE operation generates all possible combinations of grouping sets. In this example,

we're retrieving the total count of products and the average price, considering all possible

combinations of category, manufacturer, and year of manufacture.

25. ROLLUP

 This query retrieves the total count of products and the average price, providing subtotals for

each category and an overall total.

SELECT Category, Manufacturer, COUNT(*) AS ProductCount, AVG(Price) AS AvgPrice

FROM Products

GROUP BY ROLLUP (Category, Manufacturer);

The ROLLUP operation provides subtotals and grand totals for a set of columns. In this

example, we're retrieving the total count of products and the average price, providing

subtotals for each category and an overall total.

26. Subquery

 This query retrieves products with prices greater than the average price for their respective

categories.

SELECT ProductName, Price, Category

FROM Products

WHERE Price > (SELECT AVG(Price) FROM Products AS Subquery WHERE

Subquery.Category = Products.Category);

QueryCraft Page 22

A subquery is a query embedded within another query. In this example, we're retrieving

products with prices greater than the average price for their respective categories using a

subquery.

27. Correlated Subquery

 This query retrieves products with prices greater than the average price for their respective

categories, using a correlated subquery.

SELECT ProductName, Price, Category

FROM Products AS p

WHERE Price > (SELECT AVG(Price) FROM Products AS Subquery WHERE

Subquery.Category = p.Category);

A correlated subquery is a subquery that refers to columns of the outer query. In this

example, we're using a correlated subquery to retrieve products with prices greater than the

average price for their respective categories.

28. EXISTS

 This query retrieves product categories that have at least one product with a price greater

than $100.

SELECT DISTINCT Category

FROM Products AS p

WHERE EXISTS (SELECT 1 FROM Products WHERE Category = p.Category AND Price

> 100);

The EXISTS keyword is used to check the existence of rows in a subquery. In this example,

we're retrieving product categories that have at least one product with a price greater than

$100.

29. ANY

 This query retrieves product names with prices greater than any price in the 'Electronics'

category.

SELECT ProductName, Price

FROM Products

QueryCraft Page 23

WHERE Price > ANY (SELECT Price FROM Products WHERE Category = 'Electronics');

The ANY keyword is used to compare a value to a set of values. In this example, we're

retrieving product names with prices greater than any price in the 'Electronics' category.

30. ALL

 This query retrieves product names with prices greater than all prices in the 'Clothing'

category.

SELECT ProductName, Price

FROM Products

WHERE Price > ALL (SELECT Price FROM Products WHERE Category = 'Clothing');

The ALL keyword is used to compare a value to all values in a set. In this example, we're

retrieving product names with prices greater than all prices in the 'Clothing' category.

31. UNION

This query retrieves distinct product names from both the 'Electronics' and 'Clothing'

categories.

SELECT ProductName

FROM Products

WHERE Category = 'Electronics'

UNION

SELECT ProductName

FROM Products

WHERE Category = 'Clothing';

The UNION operator is used to combine the results of two or more SELECT statements,

eliminating duplicates. In this example, we're retrieving distinct product names from both the

'Electronics' and 'Clothing' categories.

QueryCraft Page 24

32. INTERSECT

This query retrieves product names that exist in both the 'Electronics' and 'Clothing'

categories.

SELECT ProductName

FROM Products

WHERE Category = 'Electronics'

INTERSECT

SELECT ProductName

FROM Products

WHERE Category = 'Clothing';

The INTERSECT operator is used to retrieve common rows between two SELECT

statements. In this example, we're retrieving product names that exist in both the 'Electronics'

and 'Clothing' categories.

33. EXCEPT

This query retrieves product names from the 'Electronics' category that do not exist in the

'Clothing' category.

SELECT ProductName

FROM Products

WHERE Category = 'Electronics'

EXCEPT

SELECT ProductName

FROM Products

WHERE Category = 'Clothing';

The EXCEPT operator is used to retrieve rows from the first SELECT statement that do not

exist in the second SELECT statement. In this example, we're retrieving product names from

the 'Electronics' category that do not exist in the 'Clothing' category.

QueryCraft Page 25

34. Common Table Expression (CTE)

This query uses a Common Table Expression (CTE) to retrieve products with prices greater

than $200.

WITH ExpensiveProducts AS (

 SELECT ProductName, Price

 FROM Products

 WHERE Price > 200

)

SELECT * FROM ExpensiveProducts;

A Common Table Expression (CTE) is a named temporary result set defined within the

execution scope of a SELECT, INSERT, UPDATE, or DELETE statement. In this example,

we're using a CTE to retrieve products with prices greater than $200.

35. Recursive CTE

This query uses a Recursive Common Table Expression (CTE) to generate a sequence of

numbers from 1 to 5.

WITH RecursiveSequence AS (

 SELECT 1 AS Number

 UNION ALL

 SELECT Number + 1

 FROM RecursiveSequence

 WHERE Number < 5

)

SELECT * FROM RecursiveSequence;

A Recursive Common Table Expression (CTE) is used to perform recursive queries, such as

traversing hierarchical data. In this example, we're using a recursive CTE to generate a

sequence of numbers from 1 to 5.

QueryCraft Page 26

36. INSERT

This query inserts a new product into the Products table.

INSERT INTO Products (ProductName, Price, Category)

VALUES ('Smartwatch', 150.00, 'Electronics');

The INSERT statement is used to add new rows to a table. In this example, we're inserting a

new product named 'Smartwatch' into the "Products" table.

37. INSERT Multiple Rows

This query inserts multiple new products into the Products table.

INSERT INTO Products (ProductName, Price, Category)

VALUES

 ('Backpack', 30.00, 'Accessories'),

 ('Sunglasses', 25.00, 'Accessories'),

 ('Fitness Tracker', 80.00, 'Electronics');

The INSERT statement can be used to insert multiple rows in a single query. In this example,

we're inserting multiple new products into the "Products" table.

38. INSERT INTO SELECT

This query inserts products from the 'Electronics' category into a new table named

'ElectronicsProducts'.

INSERT INTO ElectronicsProducts (ProductName, Price)

SELECT ProductName, Price

FROM Products

WHERE Category = 'Electronics';

The INSERT INTO SELECT statement is used to insert rows into a table from the result of a

SELECT statement. In this example, we're inserting products from the 'Electronics' category

into a new table named 'ElectronicsProducts'.

QueryCraft Page 27

39. UPDATE

This query updates the price of all products in the 'Clothing' category to $50.

UPDATE Products

SET Price = 50

WHERE Category = 'Clothing';

The UPDATE statement is used to modify existing records in a table. In this example, we're

updating the price of all products in the 'Clothing' category to $50.

40. UPDATE JOIN

This query updates the price of products in the 'Electronics' category by increasing it by 10%,

using a JOIN.

UPDATE Products

SET Price = Price * 1.10

FROM Products

JOIN Categories ON Products.CategoryID = Categories.CategoryID

WHERE Categories.Category = 'Electronics';

The UPDATE JOIN statement is used to update data in one table based on data from another

table. In this example, we're updating the price of products in the 'Electronics' category by

increasing it by 10%.

41. DELETE

This query deletes all products with a price less than $20.

DELETE FROM Products

WHERE Price < 20;

The DELETE statement is used to remove rows from a table based on a specified condition.

In this example, we're deleting all products with a price less than $20.

QueryCraft Page 28

42. MERGE

This query uses the MERGE statement to synchronize data between a source and target table.

MERGE INTO TargetTable AS Target

USING SourceTable AS Source

ON Target.ID = Source.ID

WHEN MATCHED THEN

 UPDATE SET Target.ColumnName = Source.ColumnName

WHEN NOT MATCHED THEN

 INSERT (ID, ColumnName1, ColumnName2)

 VALUES (Source.ID, Source.ColumnName1, Source.ColumnName2);

The MERGE statement is used to perform an upsert operation, combining the operations of

INSERT, UPDATE, and DELETE based on a specified condition. In this example, we're

synchronizing data between a source and target table.

43. PIVOT

This query uses the PIVOT operator to transform rows into columns, displaying total sales by

category.

SELECT *

FROM (

 SELECT Category, Price

 FROM Products

) AS SourceTable

PIVOT (

 SUM(Price)

 FOR Category IN ([Electronics], [Clothing], [Accessories])

) AS PivotTable;

The PIVOT operator is used to transform rows into columns, aggregating data in the process.

In this example, we're displaying total sales by category using the PIVOT operator.

QueryCraft Page 29

44. Transaction

This query demonstrates the use of a transaction to ensure the atomicity of a series of SQL

statements.

BEGIN TRANSACTION;

 SQL statements go here

UPDATE Products

SET StockQuantity = StockQuantity - 1

WHERE ProductID = 101;

INSERT INTO OrderHistory (ProductID, OrderDate)

VALUES (101, GETDATE());

Commit the transaction

COMMIT;

A transaction is a sequence of one or more SQL statements that are executed as

a single unit of work. The BEGIN TRANSACTION starts a new transaction,

and the COMMIT statement ends the transaction, making all changes

permanent. If an error occurs, the ROLLBACK statement can be used to undo

the changes made during the transaction, ensuring atomicity. In this example,

we're updating the stock quantity of a product and recording the order in the

order history table as part of a transaction.

QueryCraft Page 30

DATABASE NORMALIZATION

1. First Normal Form (1NF)

First Normal Form (1NF) is a database normalization step that ensures all values in a table's

columns are atomic and cannot be divided further. It eliminates repeating groups of data and

ensures each column contains only one piece of information.

Example:

 Before 1NF

ProductID | ProductName | Colors

-

1 | Laptop | Red, Blue

2 | Smartphone | Black

3 | Camera | Red, Green

 After 1NF

ProductID | ProductName

-

1 | Laptop

2 | Smartphone

3 | Camera

ProductID | Color

-

1 | Red

1 | Blue

2 | Black

3 | Red

3 | Green

QueryCraft Page 31

In the "Before 1NF" example, the "Colors" column violates 1NF as it contains multiple

values. After applying 1NF, the data is split into two tables, separating the repeating values.

2. Second Normal Form (2NF)

Second Normal Form (2NF) builds on 1NF and addresses partial dependencies. A table is in

2NF if it is in 1NF and all non-key attributes are fully functionally dependent on the primary

key.

Example:

 Before 2NF

OrderID | ProductID | ProductName | Category

1 | 101 | Laptop | Electronics

2 | 102 | Shirt | Clothing

3 | 101 | Laptop | Electronics

 After 2NF

Products

ProductID | ProductName | Category

-

101 | Laptop | Electronics

102 | Shirt | Clothing

QueryCraft Page 32

Orders

OrderID | ProductID

-

1 | 101

2 | 102

3 | 101

In the "Before 2NF" example, "ProductName" and "Category" are dependent on "ProductID"

but not the entire primary key. After applying 2NF, we separate the tables to eliminate partial

dependencies.

3. Third Normal Form (3NF)

Third Normal Form (3NF) builds on 2NF and addresses transitive dependencies. A table is in

3NF if it is in 2NF, and no transitive dependencies exist—non-key attributes are not

dependent on other non-key attributes.

Example:

Before 3NF

EmployeeID | ProjectID | EmployeeName | Department

1 | 101 | John Doe | IT

2 | 102 | Jane Smith | HR

3 | 103 | Bob Johnson | IT

QueryCraft Page 33

 After 3NF

Employees

EmployeeID | EmployeeName | Department

-

1 | John Doe | IT

2 | Jane Smith | HR

3 | Bob Johnson | IT

Projects

ProjectID | ProjectName

-

101 | Project A

102 | Project B

103 | Project C

EmployeeProjects

EmployeeID | ProjectID

-

1 | 101

2 | 102

3 | 103

In the "Before 3NF" example, "Department" is dependent on "EmployeeName" but not the

primary key. After applying 3NF, we create separate tables for employees, projects, and the

relationship between them.

QueryCraft Page 34

4. Boyce-Codd Normal Form (BCNF or 4NF)

Boyce-Codd Normal Form (BCNF) is a stricter form of 3NF that deals with situations where

there are overlapping candidate keys. A table is in BCNF if, for every non-trivial functional

dependency, the determinant is a superkey.

Example:

 Before BCNF

StudentID | CourseID | Instructor | CourseName

1 | 101 | Dr. Smith | Math

2 | 101 | Prof. Johnson| Math

3 | 102 | Dr. Brown | History

 After BCNF

Students

StudentID | Instructor

-

1 | Dr. Smith

2 | Prof. Johnson

3 | Dr. Brown

Courses

CourseID | CourseName

101 | Math

102 | History

StudentCourses

StudentID | CourseID

-

QueryCraft Page 35

1 | 101

2 | 101

3 | 102

In the "Before BCNF" example, the combination of "StudentID" and "CourseID" is a

candidate key, and "Instructor" is dependent on "CourseID" but not the entire key. After

applying BCNF, we separate the tables to ensure that dependencies are on superkeys.

5. Fifth Normal Form (5NF)

Fifth Normal Form (5NF) deals with cases where a table contains join dependencies, and it

aims to minimize redundancy and dependency.

6. Sixth Normal Form (6NF)

Sixth Normal Form (6NF) deals with the elimination of redundancy involving multivalued

dependencies in a table. It aims to further reduce data redundancy and improve data integrity.

QueryCraft Page 36

DATA DEFINITION

1. Create New Database

 This query creates a new database named 'SampleDB'.

CREATE DATABASE SampleDB;

The CREATE DATABASE statement is used to create a new database in SQL Server. In this

example, we create a database named 'SampleDB'.

2. Drop Database

 This query drops the 'SampleDB' database.

DROP DATABASE SampleDB;

The DROP DATABASE statement is used to delete an existing database in SQL Server. In

this example, we drop the 'SampleDB' database.

3. Create Schema

 This query creates a new schema named 'Sales' in the 'SampleDB' database.

CREATE SCHEMA Sales;

The CREATE SCHEMA statement is used to create a new schema in SQL Server. In this

example, we create a schema named 'Sales' within the 'SampleDB' database.

4. Alter Schema

 This query alters the 'Sales' schema, changing the owner to a different user.

ALTER SCHEMA Sales TRANSFER TO NewOwner;

The ALTER SCHEMA statement is used to modify an existing schema in SQL Server. In this

example, we alter the 'Sales' schema, transferring ownership to a new user named

'NewOwner'.

QueryCraft Page 37

5. Drop Schema

 This query drops the 'Sales' schema.

DROP SCHEMA Sales;

The DROP SCHEMA statement is used to delete an existing schema in SQL Server. In this

example, we drop the 'Sales' schema.

6. Create New Table

 This query creates a new table named 'Customers' in the 'Sales' schema.

CREATE TABLE Sales.Customers (

 CustomerID INT PRIMARY KEY,

 FirstName VARCHAR(50),

 LastName VARCHAR(50),

 Email VARCHAR(100)

);

The CREATE TABLE statement is used to create a new table in SQL Server. In this

example, we create a table named 'Customers' in the 'Sales' schema with columns for

customer information.

7. Identity Column

 This query creates a new table with an identity column.

CREATE TABLE Products (

 ProductID INT PRIMARY KEY IDENTITY(1,1),

 ProductName VARCHAR(100),

 Price DECIMAL(10, 2)

);

The IDENTITY property is used to automatically generate unique values for a column. In

this example, the 'ProductID' column is an identity column, starting at 1 and incrementing by

1.

QueryCraft Page 38

8. Sequence

Sequences are not directly supported in SQL Server like some other database systems.

Instead, you can use the SEQUENCE object, introduced in SQL Server 2012.

 This query creates a sequence named 'ProductSeq'.

CREATE SEQUENCE ProductSeq

 START WITH 1

 INCREMENT BY 1;

9. Add Column

 This query adds a new column named 'PhoneNumber' to the 'Customers' table.

ALTER TABLE Sales.Customers

ADD PhoneNumber VARCHAR(20);

The ALTER TABLE ADD COLUMN statement is used to add a new column to an existing

table. In this example, we add a 'PhoneNumber' column to the 'Customers' table.

10. Modify Column

 This query modifies the data type of the 'Price' column in the 'Products' table.

ALTER TABLE Products

ALTER COLUMN Price DECIMAL(12, 2);

The ALTER TABLE ALTER COLUMN statement is used to modify the data type of an

existing column. In this example, we change the data type of the 'Price' column in the

'Products' table.

11. Drop Column

 This query drops the 'PhoneNumber' column from the 'Customers' table.

ALTER TABLE Sales.Customers

DROP COLUMN PhoneNumber;

QueryCraft Page 39

The ALTER TABLE DROP COLUMN statement is used to remove an existing column from

a table. In this example, we drop the 'PhoneNumber' column from the 'Customers' table.

12. Computed Columns

 This query adds a computed column 'FullName' to the 'Customers' table.

ALTER TABLE Sales.Customers

ADD FullName AS (FirstName + ' ' + LastName);

Computed columns are calculated based on other columns in the table. In this example, we

add a computed column 'FullName' concatenating 'FirstName' and 'LastName' in the

'Customers' table.

13. Rename Table

 This query renames the 'Customers' table to 'Clients'.

EXEC sp_rename 'Sales.Customers', 'Clients';

The sp_rename system stored procedure is used to rename an existing table in SQL Server. In

this example, we rename the 'Customers' table to 'Clients' in the 'Sales' schema.

14. Drop Table

 This query drops the 'Clients' table.

DROP TABLE Sales.Clients;

The DROP TABLE statement is used to delete an existing table in SQL Server. In this

example, we drop the 'Clients' table in the 'Sales' schema.

15. Truncate Table

 This query removes all rows from the 'Products' table without logging individual row

deletions.

TRUNCATE TABLE Products;

QueryCraft Page 40

The TRUNCATE TABLE statement is used to remove all rows from a table without logging

individual row deletions. In this example, we truncate the 'Products' table.

16. Temporary Tables

 This query creates a temporary table '#TempOrders' to store temporary data.

CREATE TABLE #TempOrders (

 OrderID INT PRIMARY KEY,

 OrderDate DATE,

 CustomerID INT

);

 Insert data into the temporary table.

INSERT INTO #TempOrders (OrderID, OrderDate, CustomerID)

VALUES (1, '2023-01-01', 101),

 (2, '2023-01-02', 102);

Temporary tables are used to store temporary data within a session. In this example, we

create a temporary table '#TempOrders' and insert some sample data.

17. Synonym

This query creates a synonym 'ProductSyn' for the 'Products' table.

CREATE SYNONYM ProductSyn

FOR Sales.Products;

 Now, we can query 'ProductSyn' instead of 'Sales.Products'.

SELECT * FROM ProductSyn;

A synonym is an alias for a database object. In this example, we create a synonym

'ProductSyn' for the 'Products' table, allowing us to use the synonym in queries.

QueryCraft Page 41

18. SELECT INTO

This query selects data from the 'Orders' table into a new table 'OrdersArchive'.

SELECT *

INTO Sales.OrdersArchive

FROM Sales.Orders

WHERE OrderDate < '2023-01-01';

The SELECT INTO statement is used to create a new table and insert data into it from an

existing table. In this example, we create a table 'OrdersArchive' and copy data from the

'Orders' table based on a condition.

19. PRIMARY KEY

This query adds a primary key constraint to the 'EmployeeID' column in the 'Employees'

table.

ALTER TABLE Employees

ADD CONSTRAINT PK_Employees PRIMARY KEY (EmployeeID);

A primary key constraint uniquely identifies each record in a table. In this example, we add a

primary key constraint to the 'EmployeeID' column in the 'Employees' table.

20. FOREIGN KEY

This query adds a foreign key constraint to the 'ProductID' column in the 'OrderDetails' table.

ALTER TABLE OrderDetails

ADD CONSTRAINT FK_OrderDetails_Products

FOREIGN KEY (ProductID)

REFERENCES Products(ProductID);

A foreign key constraint establishes a link between two tables by referencing the primary key

of one table in another. In this example, we add a foreign key constraint to the 'ProductID'

column in the 'OrderDetails' table, referencing the 'ProductID' column in the 'Products' table.

QueryCraft Page 42

21. CHECK Constraint

This query adds a check constraint to ensure that the 'Quantity' column is greater than 0.

ALTER TABLE OrderDetails

ADD CONSTRAINT CHK_QuantityGreaterThanZero

CHECK (Quantity > 0);

A check constraint ensures that values in a column meet specific conditions. In this example,

we add a check constraint to the 'Quantity' column in the 'OrderDetails' table to ensure that it

is greater than 0.

22. UNIQUE Constraint

This query adds a unique constraint to the 'Email' column in the 'Customers' table.

ALTER TABLE Customers

ADD CONSTRAINT UQ_Customers_Email

UNIQUE (Email);

A unique constraint ensures that values in a column are unique across the table. In this

example, we add a unique constraint to the 'Email' column in the 'Customers' table.

23. NOT NULL Constraint

This query adds a not null constraint to the 'ProductName' column in the 'Products' table.

ALTER TABLE Products

ALTER COLUMN ProductName VARCHAR(100) NOT NULL;

A not null constraint ensures that a column cannot contain null values. In this example, we

add a not null constraint to the 'ProductName' column in the 'Products' table.

QueryCraft Page 43

CREATING INDEXES IN SQL

SERVER

1. Clustered Index

This query creates a clustered index on the 'EmployeeID' column in the 'Employees' table.

CREATE CLUSTERED INDEX CI_Employees_EmployeeID

ON Employees(EmployeeID);

A clustered index determines the physical order of data in a table and is created on the actual

table rows. In this example, we create a clustered index on the 'EmployeeID' column in the

'Employees' table.

2. Non-Clustered Index

This query creates a non-clustered index on the 'LastName' column in the 'Employees' table.

CREATE NONCLUSTERED INDEX NCI_Employees_LastName

ON Employees(LastName);

A non-clustered index does not affect the physical order of data in a table and is stored

separately. In this example, we create a non-clustered index on the 'LastName' column in the

'Employees' table.

3. Unique Index

This query creates a unique index on the 'Email' column in the 'Customers' table.

CREATE UNIQUE INDEX UI_Customers_Email

ON Customers(Email);

A unique index ensures that no duplicate values are allowed in the indexed column(s). In this

example, we create a unique index on the 'Email' column in the 'Customers' table.

QueryCraft Page 44

4. Filtered Index

This query creates a filtered index on the 'OrderDate' column in the 'Orders' table for orders

in 2023.

CREATE INDEX FI_Orders_OrderDate_2023

ON Orders(OrderDate)

WHERE YEAR(OrderDate) = 2023;

A filtered index includes only a subset of data that meets a specific condition. In this

example, we create a filtered index on the 'OrderDate' column in the 'Orders' table for orders

in the year 2023.

5. Column Store Index

This query creates a column store index on the 'ProductDescription' column in the 'Products'

table.

CREATE NONCLUSTERED COLUMNSTORE INDEX CSI_Products_ProductDescription

ON Products(ProductDescription);

A column store index stores and processes columnar data rather than row-based data,

optimizing data compression and query performance. In this example, we create a column

store index on the 'ProductDescription' column in the 'Products' table.

6. Hash Index

Hash indexes are not directly supported in SQL Server as a separate index type. However,

you can use hash functions within computed columns and then create indexes on those

computed columns to achieve similar functionality.

Example:

 This query adds a computed column 'HashedProductID' using a hash function.

ALTER TABLE Products

ADD HashedProductID AS HASHBYTES('SHA1', CAST(ProductID AS

VARBINARY(4)));

QueryCraft Page 45

This query creates a non-clustered index on the computed column 'HashedProductID'.

CREATE NONCLUSTERED INDEX NCI_Products_HashedProductID

ON Products(HashedProductID);

In this example, we add a computed column 'HashedProductID' using the SHA-1 hash

function and create a non-clustered index on that computed column to simulate a hash index.

QueryCraft Page 46

EXPRESSIONS

1. CASE

The CASE statement is used for conditional logic in SQL queries. It allows you to perform

different actions based on different conditions.

 This query uses CASE to categorize employees based on their salary.

SELECT

 EmployeeName,

 Salary,

 CASE

 WHEN Salary > 50000 THEN 'High Salary'

 WHEN Salary > 30000 THEN 'Moderate Salary'

 ELSE 'Low Salary'

 END AS SalaryCategory

FROM Employees;

In this example, the CASE statement categorizes employees into salary categories based on

different conditions.

2. COALESCE

The COALESCE function is used to return the first non-null expression among its arguments.

 This query uses COALESCE to handle null values in the 'MiddleName' column.

SELECT

 EmployeeID,

 FirstName,

 COALESCE(MiddleName, 'N/A') AS MiddleName,

QueryCraft Page 47

 LastName

FROM Employees;

In this example, the COALESCE function is used to replace null values in the 'MiddleName'

column with 'N/A'.

3. NULLIF

The NULLIF function is used to return null if the two specified expressions are equal;

otherwise, it returns the first expression.

This query uses NULLIF to return null if the 'EndDate' and 'StartDate' columns are equal.

SELECT

 ProjectID,

 ProjectName,

 StartDate,

 EndDate,

 NULLIF(EndDate, StartDate) AS Duration

FROM Projects;

In this example, the NULLIF function is used to calculate the duration of a project, returning

null if the 'EndDate' and 'StartDate' columns are equal.

QueryCraft Page 48

AGGREGATE FUNCTION

1. AVG

The AVG function calculates the average value of a numeric column.

This query calculates the average salary of employees.

SELECT AVG(Salary) AS AverageSalary

FROM Employees;

In this example, the AVG function is used to calculate the average salary of employees.

2. CHECKSUM_AGG

The CHECKSUM_AGG function computes a hash value over a set of values.

This query uses CHECKSUM_AGG to calculate a hash value for the 'ProductID' column.

SELECT CHECKSUM_AGG(ProductID) AS ProductChecksum

FROM Products;

In this example, the CHECKSUM_AGG function is used to calculate a hash value for the

'ProductID' column.

3. COUNT

The COUNT function counts the number of rows in a result set.

This query counts the number of orders in the 'Orders' table.

SELECT COUNT(*) AS NumberOfOrders

FROM Orders;

In this example, the COUNT function is used to count the number of orders in the 'Orders'

table.

QueryCraft Page 49

4. COUNT_BIG

The COUNT_BIG function is similar to COUNT but returns a bigint data type.

This query uses COUNT_BIG to count the number of employees.

SELECT COUNT_BIG(*) AS NumberOfEmployees

FROM Employees;

In this example, the COUNT_BIG function is used to count the number of employees, and

the result is of type bigint.

5. MAX

The MAX function returns the maximum value in a set of values.

This query retrieves the maximum salary among employees.

SELECT MAX(Salary) AS MaximumSalary

FROM Employees;

In this example, the MAX function is used to find the maximum salary among employees.

6. MIN

The MIN function returns the minimum value in a set of values.

This query retrieves the minimum salary among employees.

SELECT MIN(Salary) AS MinimumSalary

FROM Employees;

In this example, the MIN function is used to find the minimum salary among employees.

QueryCraft Page 50

7. STDEV

The STDEV function calculates the standard deviation of a set of numeric values.

This query calculates the standard deviation of order amounts.

SELECT STDEV(OrderAmount) AS OrderAmountStdDev

FROM OrderDetails;

In this example, the STDEV function is used to calculate the standard deviation of order

amounts.

8. STDEVP

The STDEVP function calculates the population standard deviation of a set of numeric

values.

This query calculates the population standard deviation of product prices.

SELECT STDEVP(Price) AS PriceStdDevPop

FROM Products;

In this example, the STDEVP function is used to calculate the population standard deviation

of product prices.

9. SUM

The SUM function calculates the sum of a set of numeric values.

This query calculates the total sales amount.

SELECT SUM(TotalAmount) AS TotalSales

FROM Sales;

In this example, the SUM function is used to calculate the total sales amount.

QueryCraft Page 51

10. VAR

The VAR function calculates the variance of a set of numeric values.

This query calculates the variance of product prices.

SELECT VAR(Price) AS PriceVariance

FROM Products;

In this example, the VAR function is used to calculate the variance of product prices.

11. VARP

The VARP function calculates the population variance of a set of numeric values.

This query calculates the population variance of employee ages.

SELECT VARP(Age) AS AgeVariancePop

FROM Employees;

In this example, the VARP function is used to calculate the population variance of employee

ages.

QueryCraft Page 52

STRING FUNCTIONS

1. ASCII

The ASCII function returns the ASCII code value of a character.

This query returns the ASCII code for the first character in the 'ProductName' column.

SELECT ASCII(SUBSTRING(ProductName, 1, 1)) AS FirstCharacterASCII

FROM Products;

In this example, the ASCII function is used to retrieve the ASCII code for the first character

in the 'ProductName' column.

2. CHAR

The CHAR function returns a character based on its ASCII code value.

This query returns a character based on the ASCII code value 65.

SELECT CHAR(65) AS CharacterA;

In this example, the CHAR function is used to return the character corresponding to the

ASCII code value 65, which is 'A'.

3. CHARINDEX

The CHARINDEX function returns the starting position of a substring within a string.

This query returns the position of 'Tech' within the 'CompanyName' column.

SELECT CHARINDEX('Tech', CompanyName) AS TechPosition

FROM Suppliers;

In this example, the CHARINDEX function is used to find the position of the substring 'Tech'

within the 'CompanyName' column.

QueryCraft Page 53

4. CONCAT

The CONCAT function concatenates two or more strings.

This query concatenates the 'FirstName' and 'LastName' columns with a space in between.

SELECT CONCAT(FirstName, ' ', LastName) AS FullName

FROM Employees;

In this example, the CONCAT function is used to concatenate the 'FirstName' and 'LastName'

columns with a space in between.

5. CONCAT_WS

The CONCAT_WS function concatenates strings with a specified separator.

This query concatenates the 'FirstName', 'LastName', and 'City' columns with a comma as a

separator.

SELECT CONCAT_WS(',', FirstName, LastName, City) AS FullNameCity

FROM Customers;

In this example, the CONCAT_WS function is used to concatenate the 'FirstName',

'LastName', and 'City' columns with a comma as a separator.

6. DIFFERENCE

The DIFFERENCE function returns an integer that represents the difference between the

SOUNDEX values of two strings.

This query returns the difference between the SOUNDEX values of 'Apple' and 'Appel'.

SELECT DIFFERENCE('Apple', 'Appel') AS SoundexDifference;

In this example, the DIFFERENCE function is used to calculate the difference between the

SOUNDEX values of two strings.

QueryCraft Page 54

7. FORMAT

The FORMAT function formats a value with the specified format.

This query formats the 'OrderDate' column as 'YYYY-MM-DD'.

SELECT FORMAT(OrderDate, 'yyyy-MM-dd') AS FormattedOrderDate

FROM Orders;

In this example, the FORMAT function is used to format the 'OrderDate' column in a specific

date format.

8. LEFT

The LEFT function returns a specified number of characters from the left side of a string.

This query returns the first three characters of the 'ProductName' column.

SELECT LEFT(ProductName, 3) AS FirstThreeCharacters

FROM Products;

In this example, the LEFT function is used to retrieve the first three characters of the

'ProductName' column.

9. LEN

The LEN function returns the number of characters in a string.

This query returns the length of the 'CompanyName' column.

SELECT LEN(CompanyName) AS CompanyNameLength

FROM Suppliers;

In this example, the LEN function is used to determine the length of the 'CompanyName'

column.

QueryCraft Page 55

10. LOWER

The LOWER function converts all characters in a string to lowercase.

This query converts the 'City' column values to lowercase.

SELECT LOWER(City) AS LowercaseCity

FROM Customers;

In this example, the LOWER function is used to convert the values in the 'City' column to

lowercase.

11. LTRIM

The LTRIM function removes leading spaces from a string.

This query removes leading spaces from the 'ProductName' column.

SELECT LTRIM(ProductName) AS TrimmedProductName

FROM Products;

In this example, the LTRIM function is used to remove leading spaces from the

'ProductName' column.

12. NCHAR

The NCHAR function returns the Unicode character based on the specified integer code.

This query returns the Unicode character for the code 65.

SELECT NCHAR(65) AS UnicodeCharacterA;

In this example, the NCHAR function is used to return the Unicode character for the code 65,

which is 'A'.

QueryCraft Page 56

13. PATINDEX

The PATINDEX function returns the starting position of a pattern in a string.

This query returns the position of the pattern 'Tech' within the 'CompanyName' column.

SELECT PATINDEX('%Tech%', CompanyName) AS TechPosition

FROM Suppliers;

In this example, the PATINDEX function is used to find the position of the pattern 'Tech'

within the 'CompanyName' column.

14. QUOTENAME

The QUOTENAME function returns a Unicode string with delimiters added to make the

input string a valid SQL Server delimited identifier.

This query adds square brackets to the 'CategoryName' values.

SELECT QUOTENAME(CategoryName, '[') AS QuotedCategoryName

FROM Categories;

In this example, the QUOTENAME function is used to add square brackets to the

'CategoryName' values.

15. REPLACE

The REPLACE function replaces occurrences of a specified string with another string.

This query replaces 'Mr.' with 'Ms.' in the 'Title' column.

SELECT REPLACE(Title, 'Mr.', 'Ms.') AS UpdatedTitle

FROM Employees;

In this example, the REPLACE function is used to replace occurrences of 'Mr.' with 'Ms.' in

the 'Title' column.

QueryCraft Page 57

16. REPLICATE

The REPLICATE function repeats a string a specified number of times.

This query repeats the '*' character five times.

SELECT REPLICATE('*', 5) AS StarPattern;

In this example, the REPLICATE function is used to repeat the '*' character five times.

17. REVERSE

The REVERSE function reverses a string.

This query reverses the characters in the 'ProductName' column.

SELECT REVERSE(ProductName) AS ReversedProductName

FROM Products;

In this example, the REVERSE function is used to reverse the characters in the

'ProductName' column.

18. RIGHT

The RIGHT function returns a specified number of characters from the right side of a string.

This query returns the last three characters of the 'ProductName' column.

SELECT RIGHT(ProductName, 3) AS LastThreeCharacters

FROM Products;

In this example, the RIGHT function is used to retrieve the last three characters of the

'ProductName' column.

QueryCraft Page 58

19. RTRIM

The RTRIM function removes trailing spaces from a string.

This query removes trailing spaces from the 'ProductName' column.

SELECT RTRIM(ProductName) AS TrimmedProductName

FROM Products;

In this example, the RTRIM function is used to remove trailing spaces from the

'ProductName' column.

20. SOUNDEX

The SOUNDEX function returns a four-character code to compare the similarity of two

strings.

This query returns the SOUNDEX value for the 'CompanyName' column.

SELECT SOUNDEX(CompanyName) AS CompanyNameSoundex

FROM Customers;

In this example, the SOUNDEX function is used to calculate the SOUNDEX value for the

'CompanyName' column.

21. SPACE

The SPACE function returns a string consisting of a specified number of space characters.

This query returns a string with ten space characters.

SELECT SPACE(10) AS TenSpaces;

In this example, the SPACE function is used to generate a string with ten space characters.

QueryCraft Page 59

22. STR

The STR function converts a numeric value to a string with specified precision and optional

format.

This query converts the numeric value 123.456 to a string with two decimal places.

SELECT STR(123.456, 6, 2) AS FormattedNumber;

In this example, the STR function is used to convert the numeric value 123.456 to a string

with two decimal places.

23. STRING_AGG

The STRING_AGG function concatenates values from multiple rows into a single string

using a specified separator.

This query concatenates 'ProductName' values with a comma separator.

SELECT STRING_AGG(ProductName, ', ') AS ConcatenatedProducts

FROM Products;

In this example, the STRING_AGG function is used to concatenate 'ProductName' values

with a comma separator.

24. STRING_ESCAPE

The STRING_ESCAPE function escapes special characters in a string.

This query escapes special characters in the 'Description' column.

SELECT STRING_ESCAPE(Description, 'json') AS EscapedDescription

FROM Products;

In this example, the STRING_ESCAPE function is used to escape special characters in the

'Description' column for JSON format.

QueryCraft Page 60

25. STRING_SPLIT

The STRING_SPLIT function splits a string into rows based on a specified separator.

This query splits the 'Tags' column into rows using a comma as a separator.

SELECT value AS Tag

FROM Products

CROSS APPLY STRING_SPLIT(Tags, ',');

In this example, the STRING_SPLIT function is used to split the 'Tags' column into rows

using a comma as a separator.

26. STUFF

The STUFF function deletes a specified length of characters from a string and then inserts

another string at a specified starting point.

This query replaces characters in the 'ProductName' column starting from the third position.

SELECT STUFF(ProductName, 3, 5, 'New') AS UpdatedProductName

FROM Products;

In this example, the STUFF function is used to replace characters in the 'ProductName'

column starting from the third position with the string 'New'.

27. SUBSTRING

The SUBSTRING function returns a portion of a string, starting at a specified position with a

specified length.

This query returns the first five characters of the 'ProductName' column.

SELECT SUBSTRING(ProductName, 1, 5) AS FirstFiveCharacters

FROM Products;

In this example, the SUBSTRING function is used to retrieve the first five characters of the

'ProductName' column.

QueryCraft Page 61

28. TRANSLATE

The TRANSLATE function replaces multiple characters in a string with characters in another

string.

This query replaces vowels with '*' in the 'ProductName' column.

SELECT TRANSLATE(ProductName, 'aeiou', '*') AS TranslatedProductName

FROM Products;

In this example, the TRANSLATE function is used to replace vowels with '*' in the

'ProductName' column.

29. TRIM

The TRIM function removes leading and trailing spaces from a string.

This query removes leading and trailing spaces from the 'City' column.

SELECT TRIM(City) AS TrimmedCity

FROM Customers;

In this example, the TRIM function is used to remove leading and trailing spaces from the

'City' column.

30. UNICODE

The UNICODE function returns the Unicode code point of the first character of a string.

This query returns the Unicode code point for the first character in the 'ProductName'

column.

SELECT UNICODE(SUBSTRING(ProductName, 1, 1)) AS FirstCharacterUnicode

FROM Products;

In this example, the UNICODE function is used to retrieve the Unicode code point for the

first character in the 'ProductName' column.

QueryCraft Page 62

31. UPPER

The UPPER function converts all characters in a string to uppercase.

This query converts the 'ProductName' values to uppercase.

SELECT UPPER(ProductName) AS UppercaseProductName

FROM Products;

In this example, the UPPER function is used to convert the 'ProductName' values to

uppercase.

QueryCraft Page 63

SYSTEM FUNCTIONS

1. CAST

The CAST function is used to explicitly convert an expression or value to a specified data

type.

This query casts the 'UnitPrice' column as an integer.

SELECT ProductName, CAST(UnitPrice AS INT) AS RoundedUnitPrice

FROM Products;

In this example, the CAST function is used to cast the 'UnitPrice' column as an integer,

rounding the values.

2. CONVERT

The CONVERT function is similar to CAST and is used to explicitly convert an expression

or value to a specified data type.

This query converts the 'OrderDate' column to a string in the 'YYYY-MM-DD' format.

SELECT CONVERT(VARCHAR, OrderDate, 23) AS FormattedOrderDate

FROM Orders;

In this example, the CONVERT function is used to convert the 'OrderDate' column to a string

in the 'YYYY-MM-DD' format.

QueryCraft Page 64

3. CHOOSE

The CHOOSE function returns the item at the specified index from a list of values.

This query returns the day of the week based on the 'OrderDay' column value.

SELECT OrderDay, CHOOSE(OrderDay, 'Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat') AS

DayOfWeek

FROM OrderSummary;

In this example, the CHOOSE function is used to return the day of the week based on the

'OrderDay' column value.

4. ISNULL

The ISNULL function replaces NULL with a specified replacement value.

This query replaces NULL values in the 'City' column with 'Unknown'.

SELECT CustomerID, ISNULL(City, 'Unknown') AS CustomerCity

FROM Customers;

In this example, the ISNULL function is used to replace NULL values in the 'City' column

with 'Unknown'.

5. ISNUMERIC

The ISNUMERIC function checks whether an expression is numeric.

This query checks if the 'UnitPrice' column values are numeric.

SELECT ProductName, UnitPrice, ISNUMERIC(UnitPrice) AS IsNumeric

FROM Products;

In this example, the ISNUMERIC function is used to check if the 'UnitPrice' column values

are numeric.

QueryCraft Page 65

6. IIF

The IIF function returns one of two values based on a specified condition.

This query returns 'High' if the 'UnitPrice' is greater than 50, otherwise 'Low'.

SELECT ProductName, UnitPrice,

 IIF(UnitPrice > 50, 'High', 'Low') AS PriceCategory

FROM Products;

In this example, the IIF function is used to categorize products as 'High' or 'Low' based on

their 'UnitPrice'.

7. TRY_CAST

The TRY_CAST function tries to cast an expression to a specified data type. If the cast fails,

it returns NULL.

This query tries to cast 'InvalidDate' values to a date format.

SELECT OrderID, TRY_CAST(InvalidDate AS DATE) AS ValidOrderDate

FROM Orders;

In this example, the TRY_CAST function is used to try to cast 'InvalidDate' values to a date

format, returning NULL for invalid dates.

8. TRY_CONVERT

The TRY_CONVERT function is similar to TRY_CAST and tries to convert an expression to

a specified data type.

This query tries to convert 'InvalidAmount' values to a decimal format.

SELECT InvoiceID, TRY_CONVERT(DECIMAL(10, 2), InvalidAmount) AS

ValidInvoiceAmount

FROM Invoices;

In this example, the TRY_CONVERT function is used to try to convert 'InvalidAmount'

values to a decimal format, returning NULL for invalid amounts.

QueryCraft Page 66

9. TRY_PARSE

The TRY_PARSE function tries to parse a string to a date or time data type. If the parse fails,

it returns NULL.

This query tries to parse 'InvalidDate' values to a date format.

SELECT ShipmentID, TRY_PARSE(InvalidDate AS DATE) AS ValidShipmentDate

FROM Shipments;

In this example, the TRY_PARSE function is used to try to parse 'InvalidDate' values to a

date format, returning NULL for invalid dates.

10. Convert date time to string

This query converts the 'OrderDate' column to a string in the 'YYYY-MM-DD' format.

SELECT OrderID, CONVERT(VARCHAR, OrderDate, 23) AS FormattedOrderDate

FROM Orders;

This example demonstrates how to convert the 'OrderDate' column to a string in the 'YYYY-

MM-DD' format using the CONVERT function.

11. Convert string to date time

This query converts the 'DateString' column to a datetime format.

SELECT EventID, CONVERT(DATETIME, DateString, 101) AS EventDate

FROM Events;

This example shows how to convert the 'DateString' column, representing dates in a string

format, to a datetime format using the CONVERT function.

12. Convert date time to date

This query converts the 'BirthDate' column to a date format.

SELECT EmployeeID, CONVERT(DATE, BirthDate) AS BirthDay

FROM Employees;

In this example, the CONVERT function is used to convert the 'BirthDate' column to a date

format, extracting only the date portion.

QueryCraft Page 67

WINDOW FUNCTIONS

1. CUME_DIST

The CUME_DIST function calculates the cumulative distribution of a value within a group of

values.

Example:

SELECT ProductName, UnitPrice, CUME_DIST() OVER (ORDER BY UnitPrice) AS

CumulativeDistribution

FROM Products;

This example calculates the cumulative distribution of product prices using the CUME_DIST

function.

2. DENSE_RANK

The DENSE_RANK function assigns a rank to each distinct row within a result set, with no

gaps in ranking values.

Example:

SELECT ProductName, UnitPrice, DENSE_RANK() OVER (ORDER BY UnitPrice) AS

DenseRank

FROM Products;

This example assigns a dense rank to product prices using the DENSE_RANK function.

QueryCraft Page 68

3. FIRST_VALUE

The FIRST_VALUE function returns the first value in an ordered set of values within a

specified window frame.

Example:

SELECT ProductName, UnitPrice, FIRST_VALUE(ProductName) OVER (ORDER BY

UnitPrice) AS FirstProduct

FROM Products;

This example retrieves the first product name in the ordered set of product prices using the

FIRST_VALUE function.

4. LAG

The LAG function retrieves data from a previous row within the result set.

Example:

SELECT ProductName, UnitPrice, LAG(UnitPrice) OVER (ORDER BY UnitPrice) AS

PreviousPrice

FROM Products;

This example retrieves the previous product price for each row using the LAG function.

5. LAST_VALUE

The LAST_VALUE function returns the last value in an ordered set of values within a

specified window frame.

Example:

SELECT ProductName, UnitPrice, LAST_VALUE(ProductName) OVER (ORDER BY

UnitPrice) AS LastProduct

FROM Products;

QueryCraft Page 69

This example retrieves the last product name in the ordered set of product prices using the

LAST_VALUE function.

6. LEAD

The LEAD function retrieves data from a subsequent row within the result set.

Example:

SELECT ProductName, UnitPrice, LEAD(UnitPrice) OVER (ORDER BY UnitPrice) AS

NextPrice

FROM Products;

This example retrieves the next product price for each row using the LEAD function.

7. NTILE

The NTILE function divides the result set into a specified number of roughly equal groups, or

"tiles."

Example:

SELECT ProductName, UnitPrice, NTILE(4) OVER (ORDER BY UnitPrice) AS

PriceGroup

FROM Products;

This example divides products into four price groups using the NTILE function.

8. PERCENT_RANK

The PERCENT_RANK function calculates the relative rank of a row within a result set as a

percentage.

Example:

QueryCraft Page 70

SELECT ProductName, UnitPrice, PERCENT_RANK() OVER (ORDER BY UnitPrice) AS

PercentRank

FROM Products;

This example calculates the percent rank of product prices using the PERCENT_RANK

function.

9. RANK

The RANK function assigns a rank to each distinct row within a result set.

Example:

SELECT ProductName, UnitPrice, RANK() OVER (ORDER BY UnitPrice) AS Rank

FROM Products;

This example assigns a rank to product prices using the RANK function.

10. ROW_NUMBER

The ROW_NUMBER function assigns a unique number to each row within a result set.

Example:

SELECT ProductName, UnitPrice, ROW_NUMBER() OVER (ORDER BY UnitPrice) AS

RowNum

FROM Products;

This example assigns a row number to each row of products using the ROW_NUMBER

function.

These examples assume the existence of the "Products" table with the specified columns.

Adjust the table and column names based on your actual database schema.

QueryCraft Page 71

Test & Evaluation

Section 1: SQL Basics and Data Manipulation

1. SQL Basics:
 What is the purpose of SQL Server?

 Briefly explain the process of installing SQL Server.

2. Data Manipulation:
 Write a SQL query to retrieve all columns from the "Products" table.

 Provide the SQL code to order the products by their unit prices in descending order.

 Explain the difference between the SELECT TOP and SELECT DISTINCT clauses.

 Demonstrate the use of the WHERE clause with an example.

Section 2: Joins and Subqueries

3. Joins:
 Write a query to perform an inner join between the "Products" and "Orders" tables

based on the common "ProductID" column.

 Explain the purpose of a self-join with a practical example.

4. Subqueries:
 Provide an example of a subquery in SQL.

 Explain the concept of a correlated subquery and when it might be useful.

Section 3: Window Functions and Indexing

5. Window Functions:

 Write a query using the ROW_NUMBER() function to assign a unique number to each

row in the "Orders" table.

 Explain the purpose of the CUME_DIST function and how it differs from

PERCENT_RANK.

6. Indexes:
 Define the term "Clustered Index" and provide an example.

 Explain the use of a filtered index and when it might be beneficial.

Section 4: Functions in SQL Server

7. String Functions:

 Demonstrate the use of the CONCAT function with an example.

 Write a query using the CHARINDEX function to find the position of a specific

character in a string.

8. System Functions:

 Explain the purpose of the TRY_CAST function and when it should be used.

Section 5: Advanced SQL Concepts

9. Database Normalization:
 Define the First Normal Form (1 NF) and provide an example.

QueryCraft Page 72

 Explain the concept of Boyce Codd Normal Form (BCNF) in the context of database

normalization.

10. Stored Procedures:
 Write a simple stored procedure to retrieve data from a table.

 Explain the use of output parameters in stored procedures.

Section 6: Additional Topics

11. Creating and Modifying Tables:
 Write a query to create a new table with appropriate columns.

 Demonstrate how to modify an existing column in a table.

12. Advanced Functions:

 Explain the purpose of the LEAD function with an example.

Section 7: Practice Scenarios

13. Scenario:
 Given a scenario where you need to find the average unit price of products in each category,

write the SQL query to achieve this.

14. Scenario:
 In a scenario where you have to create a temporary table to store intermediate results, provide

the SQL code to create and use the temporary table.

15. Scenario:
 Explain the steps involved in creating a system-versioned temporal table.

Evaluation

 Evaluate your understanding of the covered topics on a scale from 1 to 10, with 10 being the

highest.

QueryCraft Page 73

SQL SERVER DATE FUNCTIONS

RETURNING THE CURRENT DATE AND

TIME

1. CURRENT_TIMESTAMP

The CURRENT_TIMESTAMP function returns the current date and time in the session time

zone.

Example:

SELECT CURRENT_TIMESTAMP AS CurrentDateTime;

2. GETUTCDATE

The GETUTCDATE function returns the current UTC date and time.

Example:

SELECT GETUTCDATE() AS CurrentUTCDateTime;

3. GETDATE

The GETDATE function returns the current date and time in the session time zone.

Example:

SELECT GETDATE() AS CurrentDateTime;

QueryCraft Page 74

4. SYSDATETIME

The SYSDATETIME function returns the current date and time, including fractional seconds

and time zone offset.

Example:

SELECT SYSDATETIME() AS CurrentSysDateTime;

5. SYSUTCDATETIME

The SYSUTCDATETIME function returns the current UTC date and time, including

fractional seconds.

Example:

SELECT SYSUTCDATETIME() AS CurrentSysUTCDateTime;

6. SYSDATETIMEOFFSET

The SYSDATETIMEOFFSET function returns the current date and time, including fractional

seconds and the time zone offset.

Example:

SELECT SYSDATETIMEOFFSET() AS CurrentSysDateTimeOffset;

These functions can be useful in various scenarios, such as logging timestamps, capturing the

time of data modifications, or handling time-sensitive calculations. Adjust the examples

based on your specific use case and time zone considerations.

QueryCraft Page 75

RETURNING THE DATE AND

TIME PARTS

1. DATENAME

The DATENAME function returns a character string representing the specified datepart of a

date.

Example:

SELECT DATENAME(MONTH, GETDATE()) AS CurrentMonth;

2. DATEPART

The DATEPART function returns an integer representing the specified datepart of a date.

Example:

SELECT DATEPART(YEAR, GETDATE()) AS CurrentYear;

3. DAY

The DAY function returns an integer representing the day of the month for a specified date.

Example:

SELECT DAY(GETDATE()) AS CurrentDayOfMonth;

QueryCraft Page 76

4. MONTH

The MONTH function returns an integer representing the month of a specified date.

Example:

SELECT MONTH(GETDATE()) AS CurrentMonth;

5. YEAR

The YEAR function returns an integer representing the year of a specified date.

Example:

SELECT YEAR(GETDATE()) AS CurrentYear;

These functions are useful when you need to perform date-based calculations or when you

want to extract specific information from date and time values in your SQL queries. Adjust

the examples based on your specific needs and the columns you're working with in your

database.

QueryCraft Page 77

RETURNING A DIFFERENCE

BETWEEN TWO DATES

The DATEDIFF function in SQL Server calculates the difference between two dates,

returning an integer that represents the number of date or time units (such as days, months, or

seconds) between them. The syntax for the DATEDIFF function is as follows:

DATEDIFF(datepart, startdate, enddate);

datepart: The part of the date to compare, such as day, month, year, hour, etc.

startdate: The starting date.

enddate: The ending date.

Example:

Calculate the difference in days between two dates

SELECT DATEDIFF(DAY, '2023-01-01', '2023-02-15') AS DaysDifference;

 Calculate the difference in months between two dates

SELECT DATEDIFF(MONTH, '2023-01-01', '2023-02-15') AS MonthsDifference;

 Calculate the difference in hours between two datetime values

SELECT DATEDIFF(HOUR, '2023-01-01 12:00:00', '2023-01-01 18:30:00') AS

HoursDifference;

In these examples:

The first query calculates the difference in days between January 1, 2023, and February 15,

2023.

The second query calculates the difference in months between January 1, 2023, and February

15, 2023.

The third query calculates the difference in hours between 12:00 PM and 6:30 PM on January

1, 2023.

QueryCraft Page 78

You can customize the datepart, startdate, and enddate values based on your specific use

case. The result will be an integer representing the difference in the specified units.

QueryCraft Page 79

MODIFYING DATES

1. DATEADD

The DATEADD function adds a specified number of date or time units to a specified date or

time.

Example:

Add 7 days to the current date

SELECT DATEADD(DAY, 7, GETDATE()) AS NewDate;

2. EOMONTH

The EOMONTH function returns the last day of the month containing a specified date.

Example:

Get the last day of the month for the current date

SELECT EOMONTH(GETDATE()) AS LastDayOfMonth;

QueryCraft Page 80

3. SWITCHOFFSET

The SWITCHOFFSET function changes the time zone offset of a datetimeoffset value

without changing its UTC value.

Example:

Switch the time zone offset to a different value

DECLARE @dt DATETIMEOFFSET = '2023-01-15 12:00:00 -05:00';

SELECT SWITCHOFFSET(@dt, '+02:00') AS UpdatedDateTimeOffset;

4. TODATETIMEOFFSET

The TODATETIMEOFFSET function converts a datetime or smalldatetime value to

datetimeoffset by adding a specified time zone offset.

Example:

Convert a datetime value to datetimeoffset with a specific time zone offset

DECLARE @dt DATETIME = '2023-01-15 12:00:00';

SELECT TODATETIMEOFFSET(@dt, '+03:00') AS DateTimeOffsetValue;

These functions are useful for tasks like adding or subtracting time intervals, finding the end

of a month, and adjusting time zone offsets. Customize the examples based on your specific

requirements and the datetime values you are working with.

QueryCraft Page 81

CONSTRUCTING DATE AND TIME

FROM THEIR PARTS

1. DATEFROMPARTS

The DATEFROMPARTS function creates a date value from the specified year, month, and

day.

Example:

Create a date value from year, month, and day

SELECT DATEFROMPARTS(2023, 3, 1) AS ResultDate;

2. DATETIME2FROMPARTS

The DATETIME2FROMPARTS function constructs a datetime2 value from the specified

year, month, day, hour, minute, second, and fractional seconds.

Example:

Create a datetime2 value from individual parts

SELECT DATETIME2FROMPARTS(2023, 3, 1, 12, 30, 45, 500) AS ResultDateTime2;

QueryCraft Page 82

3. DATETIMEOFFSETFROMPARTS

The DATETIMEOFFSETFROMPARTS function constructs a datetimeoffset value from the

specified year, month, day, hour, minute, second, fractional seconds, time zone offset hours,

and time zone offset minutes.

Example:

Create a datetimeoffset value from individual parts

SELECT DATETIMEOFFSETFROMPARTS(2023, 3, 1, 12, 30, 45, 500, 3, 0) AS

ResultDateTimeOffset;

4. TIMEFROMPARTS

The TIMEFROMPARTS function creates a time value from the specified hour, minute,

second, and fractional seconds.

Example:

Create a time value from individual parts

SELECT TIMEFROMPARTS(12, 30, 45, 500) AS ResultTime;

These functions are useful when you have date and time information in separate columns and

need to construct a complete datetime value. Adjust the examples based on the specific date,

time, and fractional seconds values you have in your scenario.

QueryCraft Page 83

SQL SERVER STORED

PROCEDURE

1. Create a Stored Procedure with Input

Parameters:

CREATE PROCEDURE sp_InsertData

 @FirstName NVARCHAR(50),

 @LastName NVARCHAR(50)

AS

BEGIN

 INSERT INTO YourTable (FirstName, LastName)

 VALUES (@FirstName, @LastName);

END;

2. Stored Procedure to Insert Data:

CREATE PROCEDURE sp_InsertData

 @FirstName NVARCHAR(50),

 @LastName NVARCHAR(50)

AS

BEGIN

 INSERT INTO YourTable (FirstName, LastName)

 VALUES (@FirstName, @LastName);

END;

QueryCraft Page 84

3. Stored Procedure to Update Table:

CREATE PROCEDURE sp_UpdateData

 @RecordID INT,

 @NewValue NVARCHAR(50)

AS

BEGIN

 UPDATE YourTable

 SET ColumnToUpdate = @NewValue

 WHERE ID = @RecordID;

END;

4. Stored Procedure to Select Data from Table:

CREATE PROCEDURE sp_SelectData

 @ID INT

AS

BEGIN

 SELECT *

 FROM YourTable

 WHERE ID = @ID;

END;

QueryCraft Page 85

5. Stored Procedure to Delete Data from Table:

CREATE PROCEDURE sp_DeleteData

 @RecordID INT

AS

BEGIN

 DELETE FROM YourTable

 WHERE ID = @RecordID;

END;

Replace YourTable with the actual name of your table and adjust column names and types

accordingly. These are basic examples, and you can customize them based on your specific

needs.

6. Stored Procedure to Validate Username and

Password:

CREATE PROCEDURE sp_ValidateUser

 @Username NVARCHAR(50),

 @Password NVARCHAR(50)

AS

BEGIN

 IF EXISTS (SELECT 1 FROM Users WHERE Username = @Username AND Password =

@Password)

 SELECT 'Valid' AS Status;

 ELSE

 SELECT 'Invalid' AS Status;

END;

QueryCraft Page 86

7. Stored Procedure in SQL to Add Two Numbers:

CREATE PROCEDURE sp_AddNumbers

 @Number1 INT,

 @Number2 INT

AS

BEGIN

 SELECT @Number1 + @Number2 AS SumResult;

END;

8. Stored Procedure in SQL with Multiple Queries:

CREATE PROCEDURE sp_MultipleQueries

AS

BEGIN

 Query 1

 SELECT * FROM Table1;

 Query 2

 SELECT * FROM Table2;

END;

QueryCraft Page 87

9. Stored Procedure for Insert and Update with

Output Parameter:

CREATE PROCEDURE sp_InsertAndUpdate

 @ID INT,

 @Value NVARCHAR(50),

 @UpdatedValue NVARCHAR(50) OUTPUT

AS

BEGIN

 Insert

 INSERT INTO YourTable (ID, Column1)

 VALUES (@ID, @Value);

 Update

 UPDATE YourTable

 SET Column1 = @UpdatedValue

 WHERE ID = @ID;

 Set output parameter

 SET @UpdatedValue = @Value;

END;

QueryCraft Page 88

10. SQL Server Stored Procedure to List Columns:

CREATE PROCEDURE sp_ListColumns

 @TableName NVARCHAR(50)

AS

BEGIN

 SELECT COLUMN_NAME

 FROM INFORMATION_SCHEMA.COLUMNS

 WHERE TABLE_NAME = @TableName;

END;

Replace YourTable with the actual name of your table. Customize these examples based on

your specific requirements and database schema.

11. Dynamic WHERE Clause in SQL Server

Stored Procedure:

CREATE PROCEDURE sp_DynamicWhereClause

 @ColumnName NVARCHAR(50),

 @ColumnValue NVARCHAR(50)

AS

BEGIN

 DECLARE @SqlQuery NVARCHAR(MAX);

 SET @SqlQuery = 'SELECT * FROM YourTable WHERE ' +

QUOTENAME(@ColumnName) + ' = @ColumnValue';

 EXEC sp_executesql @SqlQuery, N'@ColumnValue NVARCHAR(50)', @ColumnValue;

END;

This example demonstrates a stored procedure that dynamically builds a SELECT query with

a WHERE clause based on the specified column name and value. Replace YourTable with

your actual table name.

QueryCraft Page 89

12. SQL Server Stored Procedure to Return Select

Result Concatenated:

CREATE PROCEDURE sp_ConcatenateResults

 @Parameter NVARCHAR(50)

AS

BEGIN

 DECLARE @ConcatenatedResult NVARCHAR(MAX);

 SELECT @ConcatenatedResult = COALESCE(@ConcatenatedResult + ', ', '') +

ColumnToConcatenate

 FROM YourTable

 WHERE SomeColumn = @Parameter;

 SELECT @ConcatenatedResult AS ConcatenatedResult;

END;

In this stored procedure, it concatenates values from a specific column

(ColumnToConcatenate) based on a condition and returns the concatenated result. Adjust the

column names and conditions based on your actual schema and requirements.

QueryCraft Page 90

Tables in SQL Server

1. Creating a System-Versioned Temporal Table:

Creating a System-Versioned Temporal Table

CREATE TABLE YourTemporalTable

(

 ID INT PRIMARY KEY,

 DataColumn NVARCHAR(50),

 ValidFrom datetime2 GENERATED ALWAYS AS ROW START HIDDEN,

 ValidTo datetime2 GENERATED ALWAYS AS ROW END HIDDEN,

 PERIOD FOR SYSTEM_TIME (ValidFrom, ValidTo)

);

This example creates a temporal table with a system-versioned period. The ValidFrom and

ValidTo columns are automatically managed by the system.

2. Modifying Data in a System-Versioned

Temporal Table:

Modifying Data in a System-Versioned Temporal Table

UPDATE YourTemporalTable

SET DataColumn = 'NewValue'

WHERE ID = 1;

You can modify data in a temporal table as you would in a regular table. The system will

handle the versioning of data.

QueryCraft Page 91

3. Views:

Creating a View

CREATE VIEW YourView AS

SELECT Column1, Column2

FROM YourTable

WHERE SomeCondition;

Views allow you to encapsulate complex queries and present them as a virtual table. Replace

YourTable with the actual table and customize the query.

4. Loops:

SQL Server doesn't have traditional loop constructs like some other programming languages.

Instead, you use set-based operations. However, you can achieve looping behavior using

cursors or recursive queries. Here's a basic example:

Using a WHILE loop

DECLARE @Counter INT = 1;

WHILE @Counter <= 10

BEGIN

 PRINT 'Loop iteration: ' + CAST(@Counter AS NVARCHAR(10));

 SET @Counter = @Counter + 1;

END;

QueryCraft Page 92

5. Temporary Tables:

Creating a Temporary Table

CREATE TABLE #YourTempTable

(

 ID INT PRIMARY KEY,

 DataColumn NVARCHAR(50)

);

 Inserting Data into Temporary Table

INSERT INTO #YourTempTable (ID, DataColumn)

VALUES (1, 'DataValue');

 Querying Temporary Table

SELECT * FROM #YourTempTable;

 Dropping Temporary Table

DROP TABLE #YourTempTable;

Temporary tables are used to store temporary data within a session or a query. The table is

automatically dropped when the session or query is completed. Replace #YourTempTable

with a unique name for your temporary table.

QueryCraft Page 93

QueryCraft: A Hands-On Beginner's

Tutorial

Congratulations! You've reached the end of QueryCraft: A Hands-On Beginner's

Tutorial. We hope this journey through the world of SQL Server and database

management has equipped you with the skills and confidence to navigate the data

realm with ease.

Closing Thoughts

As you close this book, remember that your journey in mastering SQL is just

beginning. Continue to explore, practice, and apply your newfound knowledge to

real-world scenarios. The ability to query databases is a powerful skill that will open

doors to exciting opportunities in your career and projects.

Thank You

A heartfelt thank you for choosing QueryCraft as your guide. Writing this book has

been a labor of love, and we sincerely hope it has made the complex world of SQL

Server more accessible and enjoyable for you.

We extend our gratitude to all the readers who embarked on this learning adventure.

Your curiosity and dedication inspire us to continue creating valuable content for

learners like you.

Stay Connected

We'd love to hear about your experiences with QueryCraft and answer any questions

you may have. Feel free to reach out to the author:

Author: Vidya Niwas Pandey

 Email: vidyaniwas2@gmail.com

Stay connected for updates, additional resources, and more SQL insights:

QueryCraft Page 94

Keep Querying, Keep Crafting!

As you step into the world of SQL, remember that every query is an opportunity to

craft solutions, unravel insights, and shape data to your advantage. May your

databases be optimized, your queries be swift, and your data always tell the story

you seek.

Happy querying!

Thank you once again for being a part of QueryCraft. Wishing you a bright and

data-filled future!

